
HWAccel

HWAccel ii

COLLABORATORS

TITLE :

HWAccel

ACTION NAME DATE SIGNATURE

WRITTEN BY August 24, 2022

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

HWAccel iii

Contents

1 HWAccel 1

1.1 HWAccel . 1

1.2 HWAccel/Introduction . 2

1.3 HWAccel/Texture Mapping . 2

1.4 HWAccel/MIP-Mapping . 3

1.5 HWAccel/Filtering . 4

1.6 HWAccel/Fogging . 5

1.7 HWAccel/Alpha Blending . 5

1.8 HWAccel/Blending . 6

1.9 HWAccel/Z Buffering . 6

1.10 HWAccel/Z Buffering-Footnotes . 7

1.11 HWAccel/Conclusion . 7

HWAccel 1 / 8

Chapter 1

HWAccel

1.1 HWAccel

3D Hardware acceleration, although hardly available on the Amiga ←↩
, has

been one of the buzzwords in gaming industry for about two years.
Modern 3D Hardware can virtually do miracles. This text should serve as
an introduction to 3D hardware with a bias towards the Warp3D
environment.

Introduction
What 3D Hardware can do for you

Texture Mapping
From Linear to Perspective texture mapping

MIP-Mapping
How to enhance appearance of small textures

Filtering
Bilinear filtering

Fogging
Minimizing Popup with Fogging

Alpha Blending
Transparency

Blending
Light up my textures

Z Buffering
Depth sorting the hardware way

Conclusion
Further reading recommendation

HWAccel 2 / 8

1.2 HWAccel/Introduction

Introduction

The ViRGE and Permedia2 are two examples of 3D Hardware on the Amiga.
Although these are currently the only ones available, chances are that
this will change with the arrival of the new machines, and the
Permedia2 is a fairly modern and fairly fast chip. But so far,
programming 3D graphics hardware has been difficult due to the fact
that there wasn’t any uniform API that supports all available cards.

This short introduction concentrates on the features of the available
chips, with a bias towards the ViRGE chip, since the current Warp3D
implementation directly supports it.

Basically, a 3D chip can draw Triangles. More modern chips can do
other geometric shapes, like quadrangles or polygons, with the latest
generation able to draw curved surfaces, but the Triangle remains the
number one drawing primitive because

1. A triangle is always planar, meaning that all vertices of a
triangle alway lie in the same plane

2. A triangle is always convex, meaning that any two points within
the triangle can always be connected with one straight line that
lies completely within the triangle.

Because of this, Warp3D basically supports triangles as a drawing
primitive (besides points and lines). The following chapters describe
what you can do with these triangles.

Two other "primitives" are supported by Warp3D, the Triangle Strip
and the Triangle Fan. A detail description can be found in the OpenGL
specification. Basically, a triangle strip is a series of vertices,
with each three successive vertices defining one triangle that has one
edge in common with the previous one. A triangle fan is a series of
vertices describing triangles that always have the first vertex in
common.

1.3 HWAccel/Texture Mapping

Texture Mapping

Texture mapping is the process of mapping a rectangular (or square)
image map onto a triangle projected to the screen in such a way that
the image seems to be stretched perspectively. There are two basic
modes for texture mapping: Linear and Perspective texture mapping.

Linear texture mapping is faster and easier, since the perspective
foreshortening is not taken into account, meaning that there is less
calculations required for drawing the map. The result, however, tends

HWAccel 3 / 8

to "shift" and "wobble" at sharp viewing angles because of dramatic
differences in vertex depth.

Perspective mapping, sometimes also shortly called "p-mapping", takes
the depth of each texel into account, resulting in a steady, correctly
looking texture map. It is a bit slower than linear mapping, since more
calculation is required on behalf of the chip, but the dramatic
increase in picture quality is often worth this price.

In order to know how to map a square or rectangular texture map onto
a triangle, each vertex is assigned a pair of texel coordinates, known
as the U/V coordinate pair. The U/V coordinates at a vertex correspond
to the X/Y coordinates into the texture map, with 0/0 being the upper
left corner of the map.

With this information per vertex, the 3D chip can "stretch" the image
onto the triangle like a piece of cloth over a wooden frame. Unlike the
cloth, however, the texture map can be repeated over the triangle for
as many times as desired. This process is called Texture Wrapping, and
can be enabled or disabled. If disabled, the parts of the triangle
outside the texture map are filled with a special "border" color. This
process is called Clamping.

If texture mapping is not active, the triangle might either be
flat-shaded or Gouraud-Shaded. When Flat-Shading, the complete triangle
is filled with one single color. The vertex colors (See

Blending
) are

ignored.

Gouraud-Shading works by interpolating the vertex colors linearly
along the edges of the triangle, and also linearly along the
scan-lines. This gives an effect that resembles lightning of the
triangle. With Blending, this effect can be combined with texture
mapping, resulting in textured triangles that are also illuminated. The
game Descent makes heavy use of lit-textureing.

1.4 HWAccel/MIP-Mapping

MIP-Mapping

Apparently, the term MIP-Mapping comes from the latin word multum in
parvo, meaning "many things in a small place". The term refers to a
kind of anti-aliasing technique that almost all 3D chip can do.

Instead of storing only one texture map of size n times n, additional
texture maps are stored at decreasingly smaller sizes. For example, for
a texture of size 128x128, additional maps would be stored with size
64x64, 32x32, 16x16, 8x8, 4x4, 2x2 and 1x1. Now, when a texture is
mapped to the screen and made larger, the original image can be used
and filtered (See

Filtering

HWAccel 4 / 8

); when it is made smaller, a mip-map is
selected accordingly.

MIP-Maps are either generated automatically by Warp3D, or can be
pre-fabricated by a graphic artist. The latter method yields better
results, since an artist can decide which details on the texture map
are important enough to be "emphasised" on the smaller map. When
MIP-Maps are automatically generated by Warp3D, an box filter is
applied. Even with this simple process, the result looks much better
with MIP-Mapping than with traditional mapping. For a good discussion
of MIP-Mapping, see http://www.irth.net/milo/3dgames/mipmap.html

1.5 HWAccel/Filtering

Filtering

When walking close to a wall in about any Wolfenstein- or Doom-Style
game, the first thing we notice is how blocky the graphics get. In the
game Descent, for example, all texture maps are 64x64 pixels. When
flying close to the wall, this texture map gets stretched to almost
screen size, making each pixel four or five times larger than usual.
Jaggies get very obvious at this size, making the overall impression
look bad.

Filtering is a process for eliminating these jaggies. Imagine a black
and a white pixel enlarged 5 times, resulting in two 5x5 pixel squares.
Instead of drawing five black and five white pixels per scan-line, a
filtering 3D chip draws only three or so black pixels, followed by a
few medium grays, and finally three white pixels. This "ramping" of
colors washes out the jaggies, anti-aliasing the texture. This really
dramatically improves the look of the final image, as can be seen in
the ViRGE version of ADescent...

There are a bunch of different filtering modes available. They can be
divided into two main groups: Those that do mip-mapping(See

MIP-Mapping
), and those that don’t.

All filter modes that have the word MIP in them are MIP-Mapping
modes. For example, the mode W3D_NEAREST means that no filtering and no
MIP-Mapping is performed. The mode W3D_LINEAR means to do bilinear
filtering, as described above. Finally, the mode W3D_LINEAR_MIP_LINEAR
specifies tri-linear filtering, meaning that bilinear filtering is
performed on two mipmap levels closest to the real point, and that this
value is linearly interpolated afterwards.

HWAccel 5 / 8

1.6 HWAccel/Fogging

Fogging

An effect often seen in Doom- and Wolfenstein-Type engines is that
the player is glowing. At least that is the impression one gets,
because everything further away from the player gets darker and darker,
until it’s pitch black. This effect is called Depth Cueing, and in fact
is only a special form of the more general technique called Fogging.

Fogging blends a pixel with a specified fog color depending on the
depth of the pixel and on the specified fogging function. There are
three fogging functions available in Warp3D, namely those that are
defined by the OpenGL specification. Those modes are linear fogging
(W3D_FOG_LINEAR), exponential fogging (W3D_FOG_EXP) and square
exponential fogging (W3D_FOG_EXP_2). The first mode, linear fogging, is
used for depth cueing. The two other modes are also collectively called
non-linear fogging, and are most often used for atmospheric effects
like, well, fog.

In order to use fogging, a fog start and end must be specified.
Everything in front of the fog start is drawn normally, while
everything behind the fog end is drawn entirely in the fog color. When
a triangle lies partly or completely between the fog start and end,
then the fog color is blended with the texture color depending on the
depth and fogging function.

1.7 HWAccel/Alpha Blending

Alpha Blending

The Term Alpha Blending refers to the process of making textures
transparent. When Alpha Blending is enabled, a texture does not simply
replace screen pixels, but is rather blended with the pixel color, the
amount of blending determined by the Alpha value of the texture pixel.
An alpha value of 0 means the texture pixel is completely transparent,
while a value of 1.0 means is is opaque.

Some 3D chips support source and destination functions. The
combination of source and destination function determine how the alpha
value of the new pixel (from the texture) and the alpha value of the
old pixel (the screen pixel) are combined to form the final alpha value
for the blending process. Once this alpha value is determined, blending
works like the one for fogging.

The ViRGE chip cannot do all forms of alpha blending. Most notably,
there’s no difference between source and destination functions, the
alpha value of the texture always completely determines the final alpha
value.

Also, like most blending effects), alpha blending does not work on

HWAccel 6 / 8

LUT8 screens (i.e. screens that do have only 8 bit and a palette).

1.8 HWAccel/Blending

Blending

Although it sounds very much like Alpha Blending, the term Blending
is a bit different, because it determines the way that the texture
affects the primitive it is mapped onto. The most common use for this
technique is lighting. A detailed description of Blending is given in
the OpenGL specification.

For lighting, each vertex is assigned a color. This color defines the
color of the light that this vertex receives. If the mode is
W3D_REPLACE, those values are ignored since the texture color replaces
the vertex color.

Again, the ViRGE chip does not support every blending mode, most
notably, it only supports W3D_REPLACE and W3D_DECAL as blending modes,
but these usually are sufficient for games and simulated lighting.

1.9 HWAccel/Z Buffering

Z Buffering

In most cases it is not sufficient to simply draw every polygon in a
scene to obtain a three-dimensional image. At the first step, surfaces
that are not visible must be culled away, but still this is not enough
to get the 3D-Effect. The problem is that triangles that are further
away from the viewer must not overdraw triangles that are closer to the
viewer.

There are many techniques to achieve this. One is the famous
Painter’s Algorithm, where triangles are sorted by their depth and then
drawn back to front. One of the inherent problems with this algorithm
however is that this depth order might not be defined, for example when
there is a cyclic overlap of polygons.

Another possibility is the use of BSP trees. Those have become famous
since the game Doom, because Doom uses them effectively to solve the
depth ordering problem.

A third possibility is Z-Buffering. The advantage of this technique
is that is is implemented in most modern chips in hardware, making it
quite fast.

Z-Buffering works by assigning each pixel on the screen a depth
coordinate. When a primitive is to be drawn, each pixel to be drawn is

HWAccel 7 / 8

checked against the pixel already on screen. If the test succeeds, the
pixel is drawn and it’s depth coordinate
(1)

Z Buffering-Footnotes
replaces that

of the screen pixel. Thus, a primitive drawn later will fail to be
drawn if its depth value does not succeed in the test.

The Test performed depends on the Compare Mode currently set. For
example, it the mode W3D_Z_LESS is set, and the ZBuffer is initialized
to all 1.0, each incoming pixel will be drawn that has a Z coordinate
of less than 1.0, essentially overwriting the 1.0 with its own value.
Each successive pixel will be discarded if its depth value is again
closer to 1.0, essentially solving the depth sorting problem.

Note also that all kinds of interesting effects can be achieved. For
example, setting the Compare Mode to W3D_Z_EQUAL and setting the
Z-Buffer uniformly to one value will essentially cut a slice out of the
scene at the given depth.

One of the problems with Z-Buffering is the precision. Most Z-Buffers
are 16 bits wide, meaning there are 65536 different depth steps. When
pixels are very close together, this precision might not be enough,
resulting in "leaking" of pixels from other polygons. This problem is
inherent to Z-Buffering, and might not be solved ad-hoc without careful
consideration, but for games this effect is most likely not so dramatic.

1.10 HWAccel/Z Buffering-Footnotes

(1) Also called Z-Value, hence the term ZBuffer

1.11 HWAccel/Conclusion

Conclusion

It is the hope of the author of this text that it has served a bit to
introduce the reader to the basics of 3D-Hardware acceleration. As
mentioned before, it was not intended as a technical guide or anything
like that.

For further reading, I recommend the following:

* The OpenGL specification, available on their web site at
http://www.sgi.com

* John DiCammillo’s Web Site at http://www.irth.net/milo

* Fast Rendering Techniques for Real-Time 3D Image Synthesis in an

HWAccel 8 / 8

interactive Environment, a master’s thesis by Hans Holten-Lund, at
the Technical University of Denmark (sorry, no URL)

* ... or one of the many 3D-Graphics related web sites out there

	HWAccel
	HWAccel
	HWAccel/Introduction
	HWAccel/Texture Mapping
	HWAccel/MIP-Mapping
	HWAccel/Filtering
	HWAccel/Fogging
	HWAccel/Alpha Blending
	HWAccel/Blending
	HWAccel/Z Buffering
	HWAccel/Z Buffering-Footnotes
	HWAccel/Conclusion

